Robot Videos: Cargo Robots, Robot Marathons, and More



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICUAS 2025: 14–17 May 2025, CHARLOTTE, NC
ICRA 2025: 19–23 May 2025, ATLANTA
London Humanoids Summit: 29–30 May 2025, LONDON
IEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN
2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON
RSS 2025: 21–25 June 2025, LOS ANGELES
ETH Robotics Summer School: 21–27 June 2025, GENEVA
IAS 2025: 30 June–4 July 2025, GENOA, ITALY
ICRES 2025: 3–4 July 2025, PORTO, PORTUGAL
IEEE World Haptics: 8–11 July 2025, SUWON, KOREA
IFAC Symposium on Robotics: 15–18 July 2025, PARIS
RoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL
RO-MAN 2025: 25–29 August 2025, EINDHOVEN, THE NETHERLANDS
CLAWAR 2025: 5–7 September 2025, SHENZHEN
CoRL 2025: 27–30 September 2025, SEOUL
IEEE Humanoids: 30 September–2 October 2025, SEOUL
World Robot Summit: 10–12 October 2025, OSAKA, JAPAN
IROS 2025: 19–25 October 2025, HANGZHOU, CHINA

Enjoy today’s videos!

Throughout the course of the past year, LEVA has been designed from the ground up as a novel robot to transport payloads. Although the use of robotics is widespread in logistics, few solutions offer the capability to efficiently transport payloads both in controlled and unstructured environments. Four-legged robots are ideal for navigating any environment a human can, yet few have the features to autonomously move payloads. This is where LEVA shines. By combining both wheels (a means of locomotion ideally suited for fast and precise motion on flat surfaces) and legs (which are perfect for traversing any terrain that humans can), LEVA strikes a balance that makes it highly versatile.

[ LEVA ]

You’ve probably heard about this humanoid robot half-marathon in China, because it got a lot of media attention, which I presume was the goal. And for those of us who remember when Asimo running was a big deal, marathon running is still impressive in some sense. It’s just hard to connect that to these robots doing anything practical, you know?

[ NBC ]

A robot navigating an outdoor environment with no prior knowledge of the space must rely on its local sensing to perceive its surroundings and plan. This can come in the form of a local metric map or local policy with some fixed horizon. Beyond that, there is a fog of unknown space marked with some fixed cost. In this work, we make a key observation that long-range navigation only necessitates identifying good frontier directions for planning instead of full-map knowledge. To this end, we propose the Long Range Navigator (LRN), which learns an intermediate affordance representation mapping high-dimensional camera images to affordable frontiers for planning, and then optimizing for maximum alignment with the desired goal. Through extensive off-road experiments on Spot and a Big Vehicle, we find that augmenting existing navigation stacks with LRN reduces human interventions at test time and leads to faster decision making indicating the relevance of LRN.

[ LRN ]

Goby is a compact, capable, programmable, and low-cost robot that lets you uncover miniature worlds from its tiny perspective.

On Kickstarter now, for an absurdly cheap US $80.

[ Kickstarter ]

Thanks, Rich!

HEBI robots demonstrated inchworm mobility during the Innovation Faire of the FIRST Robotics World Championships in Houston.

[ HEBI ]

Thanks, Andrew!

Happy Easter from Flexiv!

[ Flexiv ]

We are excited to present our proprietary reinforcement learning algorithm, refined through extensive simulations and vast training data, enabling our full-scale humanoid robot, Adam, to master humanlike locomotion. Unlike model-based gait control, our RL-driven approach grants Adam exceptional adaptability. On challenging terrains like uneven surfaces, Adam seamlessly adjusts stride, pace, and balance in real time, ensuring stable, natural movement while boosting efficiency and safety. The algorithm also delivers fluid, graceful motion with smooth joint coordination, minimizing mechanical wear, extending operational life, and significantly reducing energy use for enhanced endurance.

[ PNDbotics ]

Inside the GRASP Lab—Dr. Michael Posa and DAIR Lab. Our research centers on control, learning, planning, and analysis of robots as they interact with the world. Whether a robot is assisting within the home or operating in a manufacturing plant, the fundamental promise of robotics requires touching and affecting a complex environment in a safe and controlled fashion. We are focused on developing computationally tractable and data efficient algorithms that enable robots to operate both dynamically and safely as they quickly maneuver through and interact with their environments.

[ DAIR Lab ]

I will never understand why robotics companies feel the need to add the sounds of sick actuators when their robots move.

[ Kepler ]

Join Matt Trossen, founder of Trossen Robotics, on a time-traveling teardown through the evolution of our robotic arms! In this deep dive, Matt unboxes the ghosts of robots past—sharing behind-the-scenes stories, bold design decisions, lessons learned, and how the industry itself has shifted gears.

[ Trossen ]

This week’s Carnegie Mellon University Robotics Institute (CMU RI) seminar is a retro edition (2008!) from Charlie Kemp, previously of the Healthcare Robotics Lab at Georgia Tech and now at Hello Robot.

[ CMU RI ]

This week’s actual CMU RI seminar is from a much more modern version of Charlie Kemp.

When I started in robotics, my goal was to help robots emulate humans. Yet as my lab worked with people with mobility impairments, my notions of success changed. For assistive applications, emulation of humans is less important than ease of use and usefulness. Helping with seemingly simple tasks, such as scratching an itch or picking up a dropped object, can make a meaningful difference in a person’s life. Even full autonomy can be undesirable, since actively directing a robot can provide a sense of independence and agency. Overall, many benefits of robotic assistance derive from nonhuman aspects of robots, such as being tireless, directly controllable, and free of social characteristics that can inhibit use.

While technical challenges abound for home robots that attempt to emulate humans, I will provide evidence that human-scale mobile manipulators could benefit people with mobility impairments at home in the near future. I will describe work from my lab and Hello Robot that illustrates opportunities for valued assistance at home, including supporting activities of daily living, leading exercise games, and strengthening social connections. I will also present recent progress by Hello Robot toward unsupervised, daily in-home use by a person with severe mobility impairments.

[ CMU RI ]

From Your Site Articles

Related Articles Around the Web



Source link